Phase Relations in the Systems Na₂O-IrO₂ and Na₂O-PtO₂ in Air

C. L. MCDANIEL

National Bureau of Standards, Washington, D.C. 20234

Received March 30, 1973

The equilibrium phase relations for the Na₂O-IrO₂ and Na₂O-PtO₂ systems were determined in air using the quenching technique. The Na₂O-IrO₂ system contains two stable compounds Na₂O·IrO₂ and 2Na₂O·3IrO₂, which dissociate at 1235 and 1040°C, respectively. The Na₂O-PtO₂ system contains three compounds: Na₂O·PtO₂, metastable 2Na₂O·3PtO₂, and Na_xPt₃O₄ ($0 \le x \le 1$). Their dissociation temperatures are 890, 710, and 810°C, respectively. Indexed X-ray diffraction powder patterns for Na₂O·IrO₂ and 2Na₂O·3IrO₂ are given.

1. Introduction

This study is part of a general program of phase equilibrium investigations involving the alkaline earth and alkali metal oxides with the Pt-group metal oxides (1-3). These systems have practical importance since Pt-group metals are used extensively in metal-oxide studies, for container materials and other high-temperature applications. Equilibrium relationships of the condensed phases in the Na₂O-IrO₂ and Na₂O-PtO₂ systems in air are presented here.

2. Experimental Procedure

Specimens were prepared from 0.3 g batches of various combinations of sodium carbonate and IrO₂ or Pt powder (Pt black), each having a purity of at least 99.8%. Calculated amounts of each end member, corrected for ignition loss, were weighed to the nearest milligram. Each batch was thoroughly hand mixed and a portion was heated at the temperature of interest. Specimen containers were gold or platinum tubes; no apparent reaction occurred with the various oxide samples. Experiments were conducted in a platinum alloy wire-wound quench furnace at various temperatures for different periods of time, and quenched in air. Temperatures in the quench furnace were measured with a Pt-Pt, 10% Rh calibrated thermocouple. All furnace temperatures¹ are considered accurate

to $\pm 5^{\circ}$ C. The precision of the measurements was estimated to be $\pm 2^{\circ}$ C.

The stability of a compound was established by heating first above and then below the dissociation temperature. Stable compounds reformed from the dissociation products; if prolonged heating failed to reform the phase, it was assumed to be metastable, forming only when heating the starting materials. All specimens were examined by X-ray diffraction at room temperature with a high-angle-recording Geiger counter diffractometer and Ni-filtered Cu radiation ($\lambda = 1.54056$ Å). The scanning rate was $1/4^{\circ} 2\theta/\text{min}$. Unit cell dimensions were refined by a least-squares computer program² and estimated accurate to at least 2 in the last decimal place.

3. Results and Discussion

3.1. Na₂O-IrO₂ System

The phase diagram for the Na₂O-IrO₂ system in air is given in Fig. 1. The diagram was constructed from the data listed in Table I. It should be emphasized that Fig. 1 does not represent a true binary system. The portion between 50 to 100 mole % IrO₂ represents a composite of the Na₂O-IrO₂ and Na₂O-Ir systems in the Na-Ir-O₂ ternary. As the temperature is increased, the solid phases decompose by apparent oxygen loss.

² H. T. Evans, Jr., D. E. Appleman, and D. S. Handwerker, Amer. Crystal. Ass. Annu. Meet., Cambridge, MA, Program 43-43 (1963).

Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

¹ All temperatures listed in this paper apply to the IPTS 1968.

FIG. 1. Phase diagram for the Na₂O-IrO₂ system in air. (\bullet) Compositions and temperatures of experiments conducted. (1:1) Na₂O·IrO₂, (2:3) 2Na₂O·3IrO₂. Polymorphic phase transformations in Na₂CO₃ (5), were not investigated nor indicated on diagram. Break in base line indicates two systems Na₂CO₃-Na₂O·IrO₂ and Na₂O·IrO₂-IrO₂.

Illustrating a dissociation as a type of phase transition or decomposition in which the vapor phase is ignored gives a simple binary representation of the ternary phase relations. This method of representation has been used by other investigators and is discussed in detail (1, 4). The portion of the diagram between 0 to 50 mole % IrO₂ represents the system Na₂CO₃-Na₂O·IrO₂.³ It is not known whether Na₂CO₃-Na₂O·IrO₂ is a true binary system, as the system contains liquid of undetermined composition.

Resiman (5) reported the melting point for Na_2CO_3 as 854°C. The present work is in good agreement. There is a "eutectic" on the Na_2CO_3 rich side of the diagram. Polymorphic phase transformations in Na₂CO₃ reported by Reisman (5) were not investigated in this study nor indicated on the diagrams. Table II lists the X-ray powder pattern for the Na₂O·IrO₂ (1:1) compound indexed on the basis of a monoclinic cell, space group C2/c, with a = 5.418 Å, b = 9.394 Å, c = 10.765 Å, and $\beta = 99^{\circ}35'$. The room temperature X-ray pattern was obtained from a specimen equilibrated at 800°C and quenched in air. The dissociation temperature was established as 1235°C. Specimens heated above 1235°C gave X-ray diffraction patterns indicating only Ir metal present. It is assumed vapor (Na₂O and/or Na₂CO₃) and Ir metal are the equilibrium phases at these temperatures.

 3 Designations, such as Na₂O·IrO₂ and Na₂IrO₃, are used interchangeably.

Scheer, VanArkel and Heyding (6) reported that the $Na_2O \cdot IrO_2$ phase is isomorphous with the A_2BO_3 series of compounds proposed by Lang (7). The series includes, among others, the $Li_2O \cdot TiO_2$ and $Na_2O \cdot SnO_2$ compound which were described by reference to a monoclinic cell, as well as to a larger orthorhombic cell, three times the volume of the former. Scheer, VanArkel and Heyding (6) reported the parameters of both cells for the $Na_2O \cdot IrO_2$ phase but the exact symmetry was left undecided. The indexed powder pattern is inaccurately described by Scheer, VanArkel and Heyding (6), although the monoclinic cell dimensions are in agreement with the parameters obtained in the present study. The structure of the $Li_2O \cdot TiO_2$ phase has since been reported by Dorrian and Newnham (8) based on single crystal data which indicated that the phase has monoclinic symmetry. X-Ray powder patterns of $Na_2O \cdot IrO_2$ and $Li_2O \cdot TiO_2$ obtained in this study, indicate the phases are similar in structure.

The Na₂O·IrO₂ compound is a black powder which is reasonably stable at room temperatures but decomposes slowly over a period of several months in an air environment. Hydrolysis of the 1:1 compound was detected when in contact with water. The specimen was placed in water and dried at 100°C. Additional broad X-ray lines were observed at temperatures up to 200°C.

Unit cell dimensions and weight change versus temperature for the 1:1 compound are given in

Compos	ition	Heat Treatment ^a	h	
Na ₂ 0	Ir02	Temp. Time	X-ray Diffraction Analyses ^D	Remarks
Mo 1 %	Mo1%	°C-hr		
90	10	800-18	$Na_2CO_3 + Na_2O \cdot IrO_2$	
		820-1/2		solid
		825-1/2		solid + liquid
		830-1/2	$Na_2CO_3 + Na_2O \cdot IrO_2$	solid + liquid
		835-1/2		solid + liquid
		900-20	Na _a CO _a +Na _a O·IrO _a	Sofia - Fiquia
		1000-62	$Na_20 \cdot Ir0_2$	Na ₂ CO ₃ volatilized
66.6	33.3	800-41	$Na_20 \cdot Ir0_2 + Na_2C0_3$	
		900-19	Na ₂ O·IrO ₂ +Na ₂ CO ₃	to a second second second second
		950-1°	Ir0 ₂ +Na ₂ CO ₃ +Na ₂ O·IrO ₂	trace amount of $Na_2U \cdot IrU_2$
		1000-20	$Na_20 \cdot Ir0_2 + Na_200_3$	
		1000-23	$Na_2 U \cdot 1 U 2^{\pm} Na_2 U 3$	
		1050-4	Na_0. Ir0.	Na ₂ CO ₂ volatilized
		1100-2	$Na_2O \cdot IrO_2$ Na_O \cdot IrO_+Na_CO_	quenched in liquid nitrogen
		1100-65	Na 20 · IrO2	Na ₂ CO ₃ volatilized
		1200-2	$Na_2^20 \cdot Ir0_2^2$	quenched in liquid nitrogen
		1200-21 ^c	$Na_20 \cdot IrO_2 + Na_2CO_3$	previous heat treatment 1050-4
		1250-19¢	$Na_20 \cdot IrO_2 + Na_2CO_3$	previous heat treatment 1000-1
		1300-24 ^c	Na ₂ 0·IrO ₂ +Na ₂ CO ₃	previous heat treatment 1000-2
0	50	700-120	$Na_20 \cdot IrO_2$	
		900-21	$Na_2O TrO_2$ Na_O TrO_	
		1000-2	$Na_2O IrO_2$	
		1000-15	Na ₂ O·IrO ₂	slow cooled l°/min
		1000-22	Na20. Ir02	•
		1050-21	$Na_20 \cdot IrO_2$	
		1100-2	$Na_20 \cdot IrO_2$	quenched in liquid nitrogen
		1100-66	Na ₂ 0·Ir0 ₂	ana ana ana ang ang ang ang ang ang ang
		1200-2	Na ₂ U·IrU ₂	quenched in liquid nitrogen
		1200-2		
		1225-2	$Na_20 \cdot IrO_2$ Na_0 + IrO_2	
		1235-2	$Na_20 \cdot IrO_2 + Ir$	dissociation temperature
		1250-2	In	
		1250-19 ^C	Na ₂ O·IrO ₂	previous heat treatment 1000-1
		1300-2	Ir	
0	60	1000-22	$2Na_20\cdot 3Ir0_2+Na_20\cdot Ir0_2+Ir0_2$	nonequilibrium
		1000-68	$2Na_20 \cdot 3IrO_2 + Na_20 \cdot IrO_2 + IrO_2$	nonequilibrium
		1000-72	$2Na_2U \cdot 3IrU_2 + Na_2U \cdot IrU_2$	previous heat treatment 1100-2
		1025-20	$2Na_20 \cdot 31r0_2 + Na_20 \cdot 1r0_2 + 1r$ $2Na_20 \cdot 31r0_2 + Na_20 \cdot 1r0_2$	nonequilibrium
		1035-2	$2Na_20.31r0_2 + Na_20.1r0_2$	
		1040-2	Na ₂ O·IrO ₂ +Ir	dissociation temperature
		1040-18	Na ₂ O·IrO ₂ +Ir	erosociación competatore
		1060-2	Na ₂ 0.Ir0 ₂ +Ir	
		1100-2	Na ₂ 0.Ir0 ₂ +Ir	
33.3	66.6	800-41	$2Na_20 \cdot 3Ir0_2 + Ir0_2 + Na_20 \cdot Ir0_2$	nonequilibrium
		900-19	$2Na_2U \cdot 3IrU_2 + IrU_2 + Na_2U \cdot IrU_2$	trace amount of $Na_20 \cdot IrO_2$
		1000-23	$2Na_{2}0.3170_{2}+170_{2}+Na_{2}0.170_{2}$	nonequilibrium
		1025+20	$2Na_{2}O \cdot 31rO_{2} + 1rO_{2} + Na_{2}O \cdot 1rO_{2}$	guerched in liquid nitragen
		1050-19	Na ₂ O, IrO ₂ +Ir	quencheu in riquiu nitrogen
		1100-66	$Ir + Na_20 \cdot IrO_2$	
0	9 0	1000-20	IrO2+2Na2CO3·3IrO2	
		1040-46	Ir	Na ₂ CO ₃ volatilized
		1050-2	IF+2Na2CU3·3IFU2+Na2CU3·IFU2	nonequilibrium

Table I. Experimental Data for Compositions in the Na20-IrO2 System

^a All specimens were heat treated in open gold or platinum tubes and air quenched unless otherwise indicated. All temperatures listed applied to (IPTS 1968).

 $^{\rm b}$ $_{\rm Phases}$ identified are given in order of the relative amount present at room temperature.

 $^{\rm C}$ Sealed platinum tube container; quenched in ice water.

				-				
Na ₂ 0·IrO ₂ b				2Na20-3IrO2 C				
	d(Å)				d ()	À)	
hk ใ	obs	calc	I/I ₁		hkı	obs	calc	1/1
002 020 111 111 022	5.313 4.696 4.505 4.051 3.517	5.307 4.697 4.501 4.045 3.517	100 15 10 7 4		110 111 210 211 300	6.35 5.190 4.017 3.667 2.996	6.35 5.188 4.018 3.668 2.995	42 100 34 10 3
113 131 200 004 131 202	3.031 2.672 2.653 2.566	3.034 2.672 2.671 2.654 2.567 2.564	3 56 33 63		310 311 222 320 321 400	2.841 2.707 2.592 2.491 2.401 2.245	2.841 2.709 2.594 2.492 2.401 2.246	3 69 72 6 9 67
040) 221) 220 202) 133)	2.344 2.322 2.241	2.349) 2.340) 2.322 2.241) 2.240)	2 3 85		322 330 331 421 332	2.179 2.117 2.061 1.960 1.9156	2.179 2.118 2.061 1.961 1.9157	6 5 22 9 5
133 006 204 135 060	2.065 1.7689 1.7428 1.6055 1.5657	2.065 1.7691 1.7432 1.6049 1.5657	15 6 14 15 19		430 510 511 520 440	1.7968 1.7521 1.7293 1.6682 1.5886	1.7970 1.7621 1.7292 1.6685 1.5884	2 8 20 5 32
062 206 064 262 400	1.5017 1.3737 1.3486 1.3361	1.5017 1.3735 1.3485 1.3362 1.3357	12 4 11 5		522 530 531 600 610	1.5635 1.5410 1.5186 1.4973 1.4767	1.5641 1.5410 1.5188 1.4975 1.4771	3 2 15 1 1
262 402) 264) 335) 441)	1.2835 1.2469 1.1728	1.2835 1.2471) 1.2470) 1.1727) 1.1726)	7 3 3		611 621 541 533 622	1.4574 1.4035 1.3868 1.3701 1.3548	1.4576 1.4033 1.3865 1.3702 1.3546	1 3 4 5 16
404 355) 139) 532 531	1.1204 1.0490 1.0233 0.9920	1.1205 1.0491 1.0490) 1.0234 0.9920	3 1 3 4		630 444 550 551 720	1.3396 1.2971 1.2709 1.2585 1.2345	1.3394 1.2969 1.2707 1.2582 1.2342	2 6 2 5 2
193 2,0,10 427 391 391	0.9758 0.9345 0.9109 0.9038 0.8910	0.9757 0.9345 0.9109 0.9037 0.8910	2 2 3 3 2		721 731 650 651 800	1.2231 1.1699 1.1505 1.1412 1.1233	1.2227 1.1698 1.1504 1.1411 1.1232	2 5 1 2 3
					751 662 840 911 844	1.0376 1.0308 1.0048 0.9863 0.9171	1.0375 1.0307 1.0046 0.9863 0.9171	3 5 3 4

Table II. X-ray Diffraction Powder Data for $Na_20\cdot IrO_2$ and $2Na_20\cdot 3IrO_2$ $\left(CuK\alpha\ radiation\right)^a$

^a d - interplanar spacing, I/I_1 - relative intensity

 b X-ray pattern obtained from specimen heat treated at 800°C for 23 hrs. Indexing based on monoclinic cell with a = 5.418+0.002Å, b = 9.394+0.001Å, c = 10.765+0.003Å, and $_\beta$ = 99°35+2.4'.

 $^{\rm C}$ X-ray pattern obtained from specimen heat treated at 1025°C for 20 hrs. Indexing based on cubic cell with a = 8.985 ± 0.001 Å.

FIG. 2. Unit cell dimensions and weight change versus temperature for $Na_2O \cdot IrO_2$. (•) Data from experiments conducted in an air environment; (0) data from experiments conducted in a helium environment.

Fig. 2. The data were obtained from hightemperature X-ray equipment with the specimen in an air or flowing helium environment. The weight change experiments were conducted on the specimen heated at the indicated temperature for a period of 1 hr, placed in a desiccator and weighed immediately. The room temperature data given in Fig. 2 were obtained from specimens heated at 800°C for 21 hr and quenched in air. The X-ray data indicated well crystallized single-phase material. High-temperature X-ray experiments done in a CO₂ environment gave data similar to those in air, although the X-ray patterns were of poor quality and completely deteriorated at about 600°C. The specimen was examined after cooling and found to have a layer of white amorphous material on the surface.

Perhaps the CO₂ at 1 atm reacted with the 1:1 compound to form the white material which most likely was Na_2CO_3 . In air or CO_2 , the anomalous behavior of the cell dimensions and weight change suggests a compositional change in the compound. The maximum increase in the unit cell volume, shown in Fig. 2, corresponds to the maximum increase in weight at about 500°C. The phase has probably reacted with CO_2 , however O_2 or water vapor can not be precluded. When the 1:1 phase is slowly cooled in air from 800°C, the X-ray pattern shows extra lines, line splitting, and overall poor quality. The nature of the reactions during heating and slow cooling have not been resolved. It is uncertain whether the reaction forms discrete carbonate phases or carbonate solid solutions. Oxide phases (BaO-NiO-O-CO₂ system) reacting with atmospheric CO_2 have been reported by Negas and Roth (9) and it appears quite possible the 1:1 phase is reacting likewise. As shown in Fig. 2, the data obtained in a helium environment. indicate only thermal expansion. It should be emphasized that the room temperature unit cell dimensions, in Fig. 2, are based on a monoclinic cell and the parameters at the higher temperatures are possibly of a subcell or solid solution.

Table II lists the X-ray powder pattern for the $2Na_2O \cdot 3IrO_2$ (2:3) phase, indexed on the basis of a primitive cubic cell with a = 8.985 Å. The dissociation temperature was determined as 1040°C. Various experiments failed to produce a single-phase specimen, residual amounts of the 1:1 and IrO₂ always persisted. The composition of the cubic phase considered most likely is the 2:3 molar ratio. This mixture yielded the greatest quantity of the phase.

3.2. Na₂O-PtO₂ System

The phase diagram for the Na₂O-PtO₂ system in air is given in Fig. 3. The diagram was constructed from the data listed in Table III. The diagram is similar to the Na₂O-IrO₂ system as it also consists of two systems, Na₂CO₃-Na₂O· PtO₂ and Na₂O·PtO₂-PtO₂. Scheer, VanArkel and Heyding (6) reported that the Na₂O·PtO₂ (1:1) compound is isomorphous with the A₂BO₃ series of compounds and proposed cell dimensions based on monoclinic and orthorhombic. symmetry. The present study indicates the 1:1 phase is similar in structure with the Na₂O·IrO₂ compound. However, the high-temperature X-ray data in air, did not indicate the anomalous behavior of the cell dimensions as was detected

C. L. MCDANIEL

Composition		Heat Treatment ^a			
Na ₂ 0	Pt02	Temp. Time	X-ray Diffraction Analyses ^b	Remarks	
Mo1% 90	Mo1% 10	°C-hr 800-3 820-1/2 830-1/2 835-1/2 840-1/2	$Na_2CO_3 + Na_2O \cdot PtO_2$ $Na_2CO_3 + Na_2O \cdot PtO_2$	solid solid solid solid + ligutd	
80	20	600-18 700-2 700-65 800-20 800-192 1100-1	$\begin{array}{c} 2N_{a_2}O\cdot 3PtO_2+Pt+N_{a_2}CO_3\\ 2N_{a_2}O\cdot 3PtO_2+N_{a_2}CO_3+N_{a_2}Pt_3O_4\\ N_{a_2}O\cdot 2PtO_2+N_{a_2}CO_3\\ N_{a_2}O\cdot PtO_2+N_{a_2}CO_3\\ N_{a_2}O\cdot PtO_2+N_{a_2}CO_3\\ N_{a_2}O\cdot PtO_2+N_{a_2}CO_3\\ Pt+N_{a_2}CO_3\\ Pt+N_{a_2}CO_3\\ \end{array}$	nonequilibr ⁴ ium nonequilibrium previous heat treatment 1100-1	
66,6	33.3	600-120 600-142 700-21 800-20 900-2	Na20+PtO2+Na2CO3 2Na20+3PtO2+Na2Pt3O4+Na2CO3+Pt Na2Pt3O4+Na2O+PtO2+2Na2O+3PtO2+Na2CO3 Na20+PtO3+Na2CO3 Pt+Na2O+PtO2+Na2CO3	previous heat treatment 800-20 nonequilibrium nonequilibrium	
50	50	600-118 700-19 700-144 800-200 800-22 800-710 886-2 890-2 900-2 900-2 950-17 1000-2 1000-21 1100-20	$\begin{array}{l} 2Na_20\cdot 3Pt0_2+Na_2Pt_30_4+Pt+Na_2C0_3\\ Na_20\cdot Pt0_2\\ Pt+Na_2C0_3+Na_20\cdot Pt0_2\\ Pt+Na_20_2\cdot Pt0_2\\ Na_20\cdot Pt0_2\\ Na_20\cdot Pt0_2\\ Na_20\cdot Pt0_2\\ Na_20\cdot Pt0_2\\ Na_20\cdot Pt0_2\\ Pt0_2\cdot Pt0_2\\ Pt0_2\cdot Pt0_2\\ Pt0_2\cdot Pt0_2\\ Pt0_2\cdot Pt0_2\\ Pt+Na_20\cdot Pt0_2+Pt\\ Pt+Na_20\cdot Pt0_2+Na_2C0_3\\ Pt\\ Pt\end{array}$	nonequilibrium nonequilibrium previous heat treatment 700-1/ quenched in liquid nitrogen previous heat treatment 800-22 dissociation temperature nonequilibrium	
40	60	600-43 650-2 680-2 700-2 710-2 725-68	2Na ₂ 0·3PtC ₂ +Pt 2Na ₂ 0·3PtC ₂ +Na ₂ C·PtC ₂ +Na _X Pt ₃ O ₄ Na ₂ C·PtC ₂ +Na ₂ Pt ₃ O ₄ +Pt	small amount of Pt dissociation temperature nonequilibrium	
33.3	66.6	600-118 700-22 750-18 800-2 800-20	2Na ₂ O·3PtO ₂ +Na ₂ Pt ₃ O ₄ +Pt Na ₂ Pt ₃ O ₄ +Na ₂ O·PtO ₂ +2Na ₂ O·3PtO ₂ Na ₂ Rt ₃ O ₄ +Na ₂ O·PtO ₂ +Pt Pt+Na ₂ O·PtO ₂ Pt+Na ₂ O·PtO ₂	nonequilibrium nonequilibrium nonequilibrium	
25	75	600-44 700-23 725-68	Pt+NaxPt304+2Na20·3Pt02 NaxPt304+Pt+Na20·Pt02 NaxPt304+Na20·Pt02+Pt	nonequilibrium nonequilibrium trace amount of Pt	
20	80	600-96 700-21 700-42 750-18	NaxPt30,+Pt+Na20.PtO2 NaxPt30,+Pt+Na20.PtO2 NaxPt30,+Pt+Na20.PtO2 NaxPt30,+Pt+Na20.PtO2	nonequilibrium nonequilibrium previous heat treatment 700-21 nonequilibrium	
14	86	500-19 600-19 700-25 700-43 700-552 730-2 750-2 770-2 800-2 805-2 810-2 850-47	$\begin{array}{l} Pt+Na_{2}O\cdot PtO_{2}+Na_{x}Pt_{3}O_{4}\\ Pt+Na_{x}Pt_{2}O_{4}+ZNa_{2}O\cdot 3PtO_{2}\\ Na_{x}Pt_{3}O_{4}+Pt+2Na_{2}O\cdot 3PtO_{2}\\ Na_{2}O\cdot PtO_{2}+Pt+Na_{x}Pt_{3}O_{4}\\ Na_{x}Pt_{3}O_{4}+Pt\\ Na_{x}Pt_{3}O_{4}+Pt\\ Na_{x}Pt_{3}O_{4}+Pt\\ Na_{x}Pt_{3}O_{4}+Pt\\ Na_{x}Pt_{3}O_{4}+Pt\\ Na_{x}Pt_{3}O_{4}+Pt\\ Na_{x}Pt_{3}O_{4}+Pt+Na_{2}O\cdot PtO_{2}\\ Pt+Na_{2}O\cdot PtO_{2}\\ \end{array}$	nonequilibrium nonequilibrium trace amount of 2Na ₂ 0-3PtO ₂ previous heat treatment 850-47 small amount of Pt dissociation temperature	
10	90	600-96 700-21 700-42 750-18	NaxPt30,+Pt NaxPt30,+Pt NaxPt30,+Pt NaxPt30,+Pt	previous heat treatment 700-21	
5	95	700-21 700-42 750-18	Pt+NaxPt304 Pt+NaxPt304 Pt+NaxPt304	previous heat treatment 700-21	

Table III. Experimental Data for Compositions in the Na_2O-PtO_2 System

^a All specimens were heat treated in open gold or platinum tubes and air quenched unless otherwise indicated. All temperatures listed applied to (IPTS 1968).

^b Phases identified are given in order of the relative amount present at room temperature.

 $^{\mbox{\scriptsize L}}$ Sealed gold tube container; quenched in ice water.

FtG. 3. Phase diagram for the Na₂O-PtO₂ system in air. (•) Compositions and temperatures of experiments conducted. (1:1) Na₂O·PtO₂, (2:3) 2Na₂O·3PtO₂. (····) Metastability; (-··) phase with variable Na content ($0 \le x \le 1$). Polymorphic phase transformations in Na₂CO₃ (5) were not investigated nor indicated on diagram. Break in base line indicates two systems Na₂CO₃-Na₂O·PtO₂ and Na₂O·PtO₂-PtO₂. (?) Composition of vapor and/or liquid phases unknown (see text).

for the $Na_2O \cdot IrO_2$ phase. The data for the 1:1 compound in air, indicated only thermal expansion of the cell dimensions. The $Na_2O \cdot PtO_2$ X-ray pattern was indexed on the basis of a monoclinic cell, space group C2/c, with a = 5.411Å, b = 9.386 Å, c = 10.749 Å and $\beta = 99^{\circ}39'$. The dissociation temperature was determined as 890°C. At the dissociation temperature and above, the ? marks shown on the diagram indicate that the equilibrium phases are unknown. The experimental data failed to indicate whether or not the compound melted and if so the composition of the liquid is unknown. It is uncertain if CO_2 (absorbed from the air) would exist in the melt as reported in the Na_2O-SiO_2 system (10). Perhaps the dissociation products are O_2 , Pt(s) and $Na_2O(s)$; the latter would have volatilized and Pt metal would be the only condensed phase.

A recent publication by Urland and Hoppe (11) reported the Na₂O·PtO₂ compound prepared under an oxygen environment, which is in accord with the present work. Urland and Hoppe (11) also reported a reduced form, Na₂PtO₂ (orthorhombic symmetry) and a β -Na₂O·PtO₂ (orthorhombic modification of the monoclinic Li₂SnO₃-type structure) both prepared under an argon environment. The latter two phases were not detected in the present study and apparently are not stable in air.

The $2Na_2O \cdot 3PtO_2$ (2:3) compound appears to be similar to the cubic $2Na_2O \cdot 3IrO_2$, although

it forms only on heating indicating, perhaps, that it is metastable in air. The X-ray powder pattern showed broadening of the peaks and overall poor quality. The X-ray pattern was indexed on the basis of a cubic cell with a = 8.96 Å. The 2:3 compound dissociates to the 1:1 and Na_xPt₃O₄ compounds at 710°C.

Waser and McClanahan (12, 13) proposed the crystal structure of $Na_x Pt_3 O_4$ ($0 \le x \le 1$) based on X-ray data obtained from a microcrystalline specimen. Scheer, VanArkel and Heyding (6) also reported the Na_xPt₃O₄ phase indexed on the basis of a primitive cubic cell with a = 5.67 Å. The cell dimensions obtained in the present study are in good accord. There is disagreement among investigators whether the phase contains any sodium at all. Galloni and Busch (14) reported the absence of sodium for the same phase, obtained by the fusion of sodium chloroplatinate with sodium carbonate. This is the same method used by Waser and McClanahan (13). Muller and Roy (15) reported a sodium-free Pt_3O_4 phase with the $Na_{x}Pt_{3}O_{4}$ -type structure, prepared by heating Pt black for 5 days at 200 atm oxygen and 850°C. During this study various experiments in air, failed to produce the phase (Na_xPt₃O₄ type structure) in the absence of sodium cations.

Solid solution was not detected in the $Na_xPt_3O_4$ phase and the high-temperature X-ray data indicated no unusual behavior at temperatures up to 800°C. Single-phase material was not obtained in this study as residual amounts of Pt metal always persisted from 0 to 25 mole % sodium. Perhaps the volatility of Na₂CO₃ and grain growth of the Pt black inhibited complete reaction. A composition having the cation ratio 1:3 (Na:Pt) yielded the greatest quantity of the phase.

References

- I. C. L. MCDANIEL AND S. J. SCHNEIDER, J. Solid State Chem. 4, 275 (1972).
- 2. C. L. MCDANIEL AND S. J. SCHNEIDER, J. Res. Nat. Bur. Stand., Sect. A 75, 185 (1971).
- 3. C. L. MCDANIEL, J. Amer. Ceram. Soc. 55, 426 (1972).
- T. NEGAS AND R. S. ROTH, J. Res. Nat. Bur. Stand., Sect. A 73, 431 (1969).
- 5. A. REISMAN, J. Amer. Chem. Soc. 81, 807 (1959).

- J. J. SCHEER, A. E. VANARKEL, AND R. D. HEYDING, Can. J. Chem. 33, 683 (1955).
- 7. G. LANG, Z. Anorg. Allg. Chem. 276, 77 (1954).
- 8. J. F. DORRIAN AND R. E. NEWNHAM, Mater. Res. Bull. 4, 179 (1969).
- T. NEGAS AND R. S. ROTH, Nat. Bur. Stand. (U.S.) Spec. Publ. 364, 233 (1972).
- 10. F. C. KRACEK, J. Amer. Chem. Soc. 61, 2869 (1939).
- V. W. URLAND AND R. HOPPE, Z. Anorg. Allg. Chem. 392, 23 (1972).
- J. WASER AND E. D. MCCLANAHAN, JR., J. Chem. Phys. 19, 413 (1951).
- 13. J. WASER AND E. D. MCCLANAHAN, JR., J. Chem. Phys. 20, 199 (1952).
- 14. E. E. GALLONI AND R. H. BUSCH, J. Chem. Phys. 20, 198 (1952).
- 15. O. MULLER AND R. ROY, J. Less-Common Metals 16, 129 (1968).